Counting Rooted Trees 3
نویسنده
چکیده
Combinatorial classes T that are recursively defined using combinations of the standard multiset, sequence, directed cycle and cycle constructions, and their restrictions, have generating series T(z) with a positive radius of convergence; for most of these a simple test can be used to quickly show that the form of the asymptotics is the same as that for the class of rooted trees: C · ρ−n · n−3/2 , where ρ is the radius of convergence of T.
منابع مشابه
Counting glycans revisited.
We present an algorithm for counting glycan topologies of order n that improves on previously described algorithms by a factor n in both time and space. More generally, we provide such an algorithm for counting rooted or unrooted d-ary trees with labels or masses assigned to the vertices, and we give a "recipe" to estimate the asymptotic growth of the resulting sequences. We provide constants f...
متن کاملCounting Rooted Trees
Combinatorial classes T that are recursively defined using combinations of the standard multiset, sequence, directed cycle and cycle constructions, and their restrictions, have generating series T(z) with a positive radius of convergence; for most of these a simple test can be used to quickly show that the form of the asymptotics is the same as that for the class of rooted trees: C · ρ−n · n−3/...
متن کاملCounting Rooted Trees: The Universal Law t(n)~C ρ-n n-3/2
Combinatorial classes T that are recursively defined using combinations of the standard multiset, sequence, directed cycle and cycle constructions, and their restrictions, have generating series T(z) with a positive radius of convergence; for most of these a simple test can be used to quickly show that the form of the asymptotics is the same as that for the class of rooted trees: Cρn , where ρ ...
متن کاملCounting paths in perfect trees
We present some exact expressions for the number of paths of a given length in a perfect $m$-ary tree. We first count the paths in perfect rooted $m$-ary trees and then use the results to determine the number of paths in perfect unrooted $m$-ary trees, extending a known result for binary trees.
متن کاملComputing the Rooted Triplet Distance between Galled Trees by Counting Triangles
Article history: Available online 11 October 2013
متن کامل